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Abstract-Developed velocity profiles, for flows with mass addition or withdrawal through the boundary, 
are reported for both circular tube and two-dimensional rectangular duct geometries. For flow in a 
two-dimensional duct, a new solution was found, which suggests the possibility of a transition to turbulence 
induced by suction. Equations representing the friction coefficients are presented for both geometries. The 
development of the temperature field, in a region of fully developed velocity, is analysed for both ducts and 
for constant temperature and constant heat flux boundary conditions. The nearly universal dependence of 
the heat transfer results on a single parameter, namely, a P&let number based on the velocity of the fluid 
crossing the wall, is demonstrated. Several asymptotic solutions to the energy equation are obtained for 

high rates of mass addition and withdrawal. 
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NOMENCLATURE 

constant for duct flow, equation (11) ; 
constant for tube flow, equation (5) ; 
wall friction coeffkient (wall shear/j 

Paz); 
Fourier coehicients, equation (20) i 
specific heat at constant pressure ; 
similarity variable, equation (3) for 
tube flow, equation (9) for duct flow ; 
similarity variable, equations (3A) and 

(3R); 
eigenfunctions, equation (18) ; 
see equations (24) and (25) ; 
half height of duct, Fig. 1; 
integer, ,j = 0 for duct flow, ,j = 1 for 
tube flow ; 
thermal conductivity ; 
Nusselt number, 2Rq,/k(T, - 7”) for 
tube, ZHq,/k( 7” - 7”) for duct ; 
pressure ; 
wall Ptclet number, Re,Pr ; 

Prandtl number, pC,/k ; 
wall heat flux ; 
radial coordinate, Fig. 1; 
tube radius ; 
Reynolds number, 2Rpuip for tube, 
2Hpu~p for duct; 
wall Reynolds number, pv,2R/p for 
tube, pv,2Hl,u for duct; 
time ; 
temperature ; 
axial velocity ; 
mean axial velocity ; 
velocity normal to wall ; 
weighting function ; 
coordinate parallel to wall, Fig. 1; 
coordinate normal to duct wall ; 
eigenvalues, equation (18) ; 
dimensionless coordinate, y/H for duct, 
r/R for tube ; 
dimensionless coordinate, (r/R)2 ; 
(T- T,)j(T’, - T,) for C.W.T. bound- 
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w condition, k(T - T,)jq,R for 
C.H.F. boundary condition, tube geo- 
metry, k(T - T,)jq,H for C.H.F. 
boundary condition, duct geometry ; 
difference temperature, equation (32) ; 
absolute viscosity; 
dimensionless coordinate, x/R for tube, 
x/H for duct ; 
fluid density ; 
inverse Graetz number, (xjR)/Re,Pr 
for tube, (x/H)/Re,Pr for duct. 

Subscripts 

I% bulk condition ; 

2 

centerline condition ; 
thermally developed condition ; 

.i, subscript on f(i), ,i = 0 for duct flow, 
.i = 1 for tube flow ; 

0, conditions where heating begins, 
x = 0; 

W conditions at the wall. 

INTRODUCTION 

1-r. WAS demonstrated nearly two decades ago, 
that the equations of motion for laminar, fully 
developed flow in circular tubes or two-dimen- 
sional rectangular ducts, with fluid injection or 
withdrawal through the boundaries, could be 
reduced to a single, fourth order, non-linear, 
ordinary differential equation. This equation 
was initially solved using perturbation tech- 
niques. Fully numerical solutions were obtained 
first by Eckert et al. [l] and Berman [2]. For 
the circular tube geometry, both of these 
investigations revealed a multiplicity of solutions 
for certain ranges of suction velocity, and 
established that, at a certain critical suction rate, 
the velocity gradient at the wall became zero. 
Berman pointed out that, for the circular tube 
geometry, suction could therefore induce a 
transition to turbulence. No corresponding 
situation has been reported for the two-dimen- 
sional rectangular duct geometry. The question 
of a suction induced transition and a multiplicity 
of solutions for this geometry is considered here. 

Kinney [3] computed friction coefficients for 
fully developed laminar tube flow and pointed 

out the importance of these for studies of inter- 
facial stress between a vapour flowing in the core 
of a tube and the liquid condensate film on the 
wall. The corresponding calculations for two- 
dimensional duct flow have not been reported 
and equations from which the friction coefficients 
can be directly computed are not available. 
From the remarkably different influence of 
suction and injection on the velocity profiles in 
circular tubes compared to rectangular ducts 
[2], the friction coefficients would also be 
expected to display distinctly different charac- 
teristics. The present investigation also deals 
with these questions. 

The interaction of wall mass transfer and heat 
transfer has received little attention. Yuan and 
Finkelstein [4] carried out a perturbation solu- 
tion for small injection rates to show the effect 
of a step change in tube wall temperature. 
Kinney [3] computed the fully developed tem- 
perature profiles for flow in a circular tube at 
constant wall temperature. The present investi- 
gation deals with the problem of thermal 
development in a region of fully developed 
velocity in rectangular ducts and circular tubes 
for both constant wall temperature and con- 
stant heat flux boundary conditions. The results 
(namely, the fully developed temperature pro- 
files and Nusselt numbers as well as develop- 
ment lengths) for each of the four separate 
cases are shown to depend almost exclusively on 
a single parameter, a PC& number based on the 
suction or injection velocity. In addition, com- 
parisons are made to show the influence of the 
duct geometry and the thermal boundary condi- 
tion on the heat transfer results. Independent of, 
and simultaneous to, the present investigation 
Pederson [9] solved one of these cases, namely 
the problem of thermal development in a 
circular tube at constant wall temperature. The 
form of Pederson’s solution is different than that 
presented here. 

It should be noted that solutions of the thermal 
development problem are directly applicable to 
problems involving the flow of a binary gas 
where one component of the gas is evaporating 
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or condensing at the wall. If the Schmidt 
number replaces the Prandtl number, then the 
concentration profile of the condensing or 
evaporating component will be the same as the 
temperature profile (provided the boundary 
conditions are the same) and the Nusselt num- 
ber for diffusive mass transfer corresponds to the 
Nusselt number for heat transfer [ 131. 

FULLY DEVELOPED VELOCITY PROFILE 
ANALYSIS 

Several investigators have computed the fully 
developed velocity profiles in circular tubes 
(referred to here as tubes) and two-dimensional 
rectangular channels (ducts) with suction and 
blowing through the wall. Berman [2] provides 
m excellent review. The discussion here will 
briefly describe some new developments in this 
problem. A short review will provide the neces- 
sary background. 

(a) 

/ 

(b) 

FIG. 1. Geometries and coordinate systems. 

It is assumed that the flow through the tube 
and duct is two-dimensional, symmetric, steady, 
laminar, and has no significant property value 
variations. The rate of mass transfer through the 
wall is also assumed uniform. The usual co- 
ordinate systems are shown in Fig. 1. 

The appropriate momentum and continuity 
equations are conveniently written in vector 
notation as 

DV 
--= 
Dt 

- -?jVP + FViY.whereT; = 0 (1) 

v.v = 0. (2) 
V2, the Lapacian, has the form appropriate to 
the coordinate system (rectangular for the duct, 
cylindrical for the tube). V is the two-dimensional 
velocity vector with components u and u 
respectively in the x and I (tube) or y (duct) 
directions. 

Tubeflow. Yuan and Finkelstein [5] proposed 
that, in the fully developed region, u/ii should be 
a function only of q = (r/R)‘. 
For example 

u = 2fiF’(rl) = , f;(i) 
r * 

To satisfy the continuity equation 

(3A) 

u = - 2u,F(q)j(JY/) = - 2+. (3B) 

The expressions for u and v in terms of functions 
of c will be used in a later section. Substituting 
u and u into equation (l), it can be shown [2, 31 
that F is described by the differential equation 

,,F”’ + F” _ !!y- (J7’* _ FF”) + &! = 0 (4) 

Re aP 
where A, = - -_?- 

PU at 

Four boundary conditions are required to 
determine F and A, in equation (4). 
These are 

atr= Rorq= 1 
(a) u = - uW or F(1) = 4 
(b) u = 0 or F’(1) = 0 

D 
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atr=Oorn=O 
(C)V = 0 or F(0) = 0 

(d);=O or lim(Jr/)F”(O) = 0. 
v-0 (6) 

Boundary condition (d), equation 6, is difficult 
to handle numerically since no definite value is 
assigned to F”(0). Berman [2] avoided this 
problem by writing equation 4 in terms of c but 
in this case one must solve an integro-differential 
equation. Eckert et al. [l] integrated from r/ = 1 
to v/ = 0 and used, instead of condition (d), the 
relation r/F”’ (0) = 0; difficulties were encoun- 
tered evaluating F”’ (0). In the present investiga- 
tion, condition (d) was replaced by the constraint 

J”‘(O) = !F [F'(0)12 - $. (7) 

Since F’(q) represents the velocity ratio a/2G, 
[F’(O)]’ must remain finite and F”(q) and F’(q) 
must be continuous. It follows therefore, that 
equation 7 guarantees that lim(Jv/)F”(O) = 0. 

If, in addition, F”‘(q) is finite aiiiontinuous, the 
two conditions can be shown to be exactly 
equivalent. 

In a numerical integration scheme, a starting 
value of F”‘(O) is required. From equations (4) 
and (7) it follows that 

F”‘(O) = Fp F’(0) F”(O). 

After replacing condition (d), equation (6), by 
equation (7) and by utilizing the above equation 
for F”‘(O), equation (4) was numerically integrated 
to obtain values of A, and distributions of F, F’ 
and F” to an accuracy of about 9 significant 
figures. 

The results of the velocity profile computa- 
tions are well summarized by Berman [2]. It 
seems appropriate to give a brief review so that 
a comparison can be made with some new 
developments for the duct flow case. 

For no wall mass transfer (Re, = 0), equation 
(4) yields the usual parabolic velocity profile, 
u/U = 2(1 - VI) (Fig. 2A). The axial pressure 

gradient, related to A, in equation (4) by 
equation (5), is negative (A, = + 16). For mass 
injection (Re, > O), the velocity profile (u/ii), 

101 
k 
\ 

04- 

FIG. 2. Fully developed velocity profiles for tubes (a) and 
two-dimensional ducts (b). 

becomes gradually fuller ; Yuan and Finkelstein 
[5] have shown that u/ii = 2F’(vl) + 7r/2 cos 
~v//2 for large Re,. The pressure gradient 
remains negative as indicated by a monotonically 
increasing value of A, with Re,. For large Re,, 
A, -+ 27r2[1 + (Re,i4)]. Kinney [3] has shown 
that the friction coefficient, Cl, increases with 
Re, for a given local Reynolds number, Re. 
From the above velocity profile for asymptoti- 
cally large Re,, Cf + 2n2jRe. The dependence 
of CsRe on Re, is shown in Fig. 3. The following 
empirical equation accurately represents the 
data for negative as well as positive Re, : 

CfRe = 

With increasing wall suction (Re, < 0), the 
pressure gradient increases to zero and becomes 
positive for large enough suction. This perhaps 
surprising fact can be understood by writing a 
momentum balance over the cross-section of 
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the tube. The velocity gradient at the wall, and 
therefore C,. also, decreases and becomes zero, 
according to the present calculations, for 
- 4.5980 < Rew < -4.5978 ; this value agrees 
closely with Berman’s calculations but is con- 
siderably different than the value given by 
Kinney [3]. If other solutions to equation (4) 
are sought for smaller suction rates (Re, > 
-4,5978), a second is found [l, 21 in which 
u/ti becomes negative near the wall, i.e. backflow 

FIG. 3. “Exact” friction coe!licients and empirical equations 
for the region of fully developed flow. 

occurs. The solutions become identical as Re, 
decreases and approaches the critical value 
(Re, z -4.5978); the two solutions are shown 
in Fig. 2A for Re, = -4.5. Thwaites [6] has 
also shown the possibility of two flows, one with 
backflow, in a two-dimensional diffuser with 
wall suction. It appears unlikely, in the tube flow 
case, that the second profile would ever be 
physically realized since the accompanying 
adverse pressure gradient is very large compared 
to that for the first solution (see A, values in 
Fig. 2). 

In the presence of the adverse pressure 
gradient, the profile with backflow, if it could 
be produced, would probably become quickly 
turbulent. The profile that seems physically 
possible also takes on a less stable shape, and 
must flow against an increasingly adverse 
pressure gradient, as the suction is increased. As 

Berman [2] points out, suction could induce a 
transition to turbulence for values of Re at 
which a flow would be normally stable. For 
external flows, where the pressure gradient is not 
dependent on the suction rate, suction actually 
increases, rather than decreases, the flow stability. 

Two-dimensional duct flow. In the fully de- 
veloped region, Berman [7] suggested that u/ii 
be a function of [ = yjH alone. In this investiga- 
tion, the relationship used was 

U = 2iifb(<). (9A) 

To satisfy the continuity constraint, equation (2) 

u = -2%f,(i). (9B) 

The momentum equation, equation (l), is 
satisfied if f,, is the solution to 

fg + Rew[fofg - (fb)‘] + % = 0 

where 

(10) 

A, is a function of Rew alone. The four boundary 
conditions necessary to determine f,, and A,, 
from equation (10) are 

aty=Hor[= 1 
(a)u = - uw or fo(l) = + 
(b) u = 0 or f;(l) = 0 

aty=Oor[=O (12) 
(c) u = 0, or fo(0) = 0 

(d) g = 0 or J:(O) = 0. 
I 
J 

For no wall mass transfer (Re, = 0), equa- 
tions (10) and (12) yield the usual parabolic 
profile, u/ii = 3/2 (1 - c2), and a negative axial 
pressure gradient (in equation (1 l), A, = 6.0). 
With increasing blowing, the u/ti profile becomes 
only very slightly less full ; as Re, + 00 Yuan 
[S] has shown that u/ii + 7cj2 cos (xLJ2). The 
profiles for Re, = 0 and Re, + co are shown in 
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Fig. 2B. As Re, increases, the axial pressure 
gradient also becomes more favourable, as 
reflected in the monotonically decreasing value 
of -A, shown in Fig. 4 (solid line). 

As opposed to the tube flow case, where a 
second solution to the momentum equation was 
found over a certain range of suction, only one 
solution for duct flow has been reported. The 
suction profile for Re, = -30 is indicated in 
Fig. 2B by the solid line. As Re, + -co, the 
velocity profile has been shown to become 
progressively flatter so that u -+ ii everywhere 

80- Limiting value -$-_ - 16 

-I4 

Duct flow -I2 

-IO 

-04 

-8O- 

-60 -40 -20 0 20 40 

Ret 

FIG. 4. Dependence of pressure gradient parameter and 
ii/u% on Re, for the two possible solutions for fully developed 

duct flow. 

in the duct. The fullness of the profile is reflected 
in the ratio of the centreline velocity to the mean 
velocity, u&i. The change in this ratio with 
Re,, and the asymptotic limits for Re, + cc 

and Re, -+ -co, are shown in Fig. 4 by the 
solid line. 

As the suction increases and the profile 
becomes flatter, the gradient at the wall, and 
therefore CJ, must increase. By an analysis 
similar to Kinney’s [3], it is possible to show 
that, for duct flow also, CfRe is a function of 
Re, alone. Values of Cf can be computed from 
the empirical equation 

C,Re = n2 + exp [f ai(Re,Y- ‘1 (13) 
i=l 

This equation, with a, = 0.7757, a, = -0.8149 
x lo-‘, a3 = 0.1022 x 10F2, a4 = 0.1413 x 
low4 and a5 = -0.4062 x 10w6, is compared 
to the “exact” values in Fig. 3. 

With increasing suction, the opposing pressure 
gradient has been found to become larger, as 
indicated in Fig. 4 by the increasing value of 
-A, (solid line). 

From the literature it would appear that the 
suction-induced instability and the existence 
of multiple solutions for tube flow have no 
counterpart in duct flow. However, in a search 
for additional solutions to equation (lo), satis- 
fying all the boundary conditions of equation 
(12), an additional solution was found for values 
of Re, smaller than about - 24. The u/ii profile 
from this solution for Re, = -30 is shown in 
Fig. 2B by a broken line. For Re, values 
between about - 24 and - 54, u/ii has a minimum 
at the centreline and passes through a maximum 
before going to zero at the wall ; for larger suction 
rates, u/ii has a maximum at the centreline and 
passes through a minimum and another maxi- 
mum before going to zero at the wall. For very 
large suction, it appears that this second solution 
approaches the slug flow profile (u/U = 1) dis- 
cussed previously. The ratio of the centreline 
velocity to the mean velocity, u&i, is shown for 
this solution be a broken line in Fig. 4. Note that 
u/ii becomes negative, i.e. back flow occurs, in 
the center of the duct, for values of Re, close 
to -24. 

In the tube flow case, the second solution had 
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associated with it a very high opposing pressure 
gradient. It seems unlikely that such a contigura- 
tion would be naturally selected by the flow. For 

I = R 
’ 

duct flow with suction, however, the second 1 

T = T, 
C.W.T. 

case 

aT/ar = -qwjk 
C.H.F. 

solution has associated with it a lower opposing 
case 

pressure gradient for values of Re, smaller than and for the duct are 
about -24.5. If one gradually increased the 
suction from zero, the laminar velocity field 
would apparently correspond to that predicted 1 
by the first solution up at least Rew = -245 
Near this suction rate, there is a second velocity 
profile possible that would result in a lower 
opposing pressure gradient. Which velocity 
profile is selected by the flow for higher suction 
could depend on the inlet velocity profile. If the 
flow develops towards the second solution, 
there would likely be a transition to turbulence 
due to a combination of the velocity profile 
inflections and the opposing pressure gradient. 
Re,, instead of Re, would then be the important 
parameter in determining flow stability. In any 
case, an experimental or further analytical 
investigation would prove interesting 

THERMAL ENTRANCE REGION ANALYSIS 

Sufficiently far downstream from the entrance 
of the tube or duct, the velocity field would 
become fully developed. The wall and fluid are 
assumed to have a uniform temperature up to 
some point, designated by x = 0, located in the 
fully developed region. For x > 0 a developing 
temperature field is considered for two cases: 
(a) the wall temperature, T,, is constant and 
different from the T, for x < 0 (designated 
C.W.T. case) and (b) the heat fiux from the wall, 
qw, is constant (designated C.H.F. case). The 
analysis in both cases assumes a non-dissipative, 
constant-property flow in which the longitudinal 
heat conduction is neglected relative to the 
radial conduction. The energy equation and the 
associated boundary conditions for the tube are 

x=O,T= To; Y = 0, aTJar = 0 
tube (14) 

x=O,T= To; 

: 

T = T, 
Y = H, 

. aTlay = -qw/k 

duct (15) 

The C.W.T. case for the tube and duct are 
considered first. 

C. W.T. solutions for tubes and ducts 
The development of the temperature field 

occurs in a region of fully developed velocity. 
The functions F(rj) for the tube [or by the 
transformation in equation (3), f,(t;)] and f,,(c) 
for the duct, related to the fully developed u and 
v components, are available from the above 
solutions. Introducing f,(l) into equations (14) 
and (15), where j = 1 for tube flow and j = 0 
for duct flow, changing coordinates to 5 and x 
and setting 8 = (T - T,)j( To - T,) one obtains 

i iih)ae 
= ---_-_ 

0’ + 1) ii, ax’ 
(16) 

For tube flow ,j = 1, for duct flow j = 0. 
A PC&t number, defined by Pew = Re,Pr 

has been introduced ; for mass injection, this 
parameter physically represents the ratio of 
radial heat convection to radial heat conduction. 
Its physical meaning for flow with mass with- 
drawal is examined below. 

If the axial conduction term had not been 
neglected, the term -(Re,Pr)-2a28jaX2 would 
be added to the right-hand side of equation (16). 
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For (Re,,Pr)’ p 1, it would appear that this 
term could be neglected. For flow with suction, 
where the heating is not begun until most of 
the mass has been withdrawn, this condition 
will not be satisfied. 

IJtilizing a mass balance to express i#-, in 
terms of Pe,, the solution to equation (16) with 
associated boundary conditions is found, by the 
Graetz method, to be 

8 = f Ci[l + (1 +,j)Pe,x]-B’tiP’“Gi(r). (17) 
i=l 

Gi and bf are respectively eigenfunctions and 
eigenvalues of the problem 

[‘Gi’ + (j + fjPew) Gi + pzf3Gi = 0 

bc. G, = 1, Gi = 0 at c = 0 (18) 

Gi = 0 at i = 1. 

Primes denote differentiation with respect to 5. 
The Ci coefficients in equation (17) are deter- 
mined from the condition % = 1 at 2 = 0. Since 
the eigenfunctions of equation (18) are ortho- 
gonal with respect to the weighting function 
w(c), where 

the Ci values are given by 

Ci = i %(O, 0 w(c) G,(c) dij i W(c) G?(5) di (20) 
0 0 

where, for the C.W.T. case, %(O, [) = 1. 
From the definition of the Nusselt number, 

and a relation obtained by integrating equation 
(18) from i = 0 to 1, one obtains 

2 Ci(l + (1 + .j)PewX)-@f’PewGI(l) 
Nu = !?;-‘-__----___---_. (21) 

c C.[l -t (1 + ,j)Pe,X]-Bf’P”W 
-L--~-_-p~w~--- G;(l) 

I 
i=l 

For large values of x, the first terms in the series 
will dominate. Therefore, the fully developed 
Nusselt number is 

Nufd = bf - Pe,. (22) 

Equation (22), for tube flow, was given previously 
by Kinney [3]. Note that the value of j3:, and 
thus Nu,.,, for tube flow will be different from 
that for duct flow. In fact, all of the constants 
j?f and Ci and all the functions G,(c) and w(c) 
will be different for the two geometries so that 
solutions must be carried out separately for 
j=Oandj= 1. 

The above results contain, as special cases, 
the solutions for no mass transfer across the 
wall. This may be seen immediately by recog- 
nizing that 

lim [l + (1 + ,j) PewX]-Bf’Pew 
(Pew+O) 

= exp [ 4 + .Mxl. 

Numerical results are obtained by computing 
the functions fj([) and f>(c) from equations 
(3A)+‘) for tube flow (j= 1) or from equations 
(10)-(12) for duct flow (j = 0). Introducing these 
into equation (18) and specifying Pe, permits 
G,(c) and j?f to be found numerically. The 
temperature profile and Nusselt number at any 
value of x can be found respectively from 
equations (17) and (21) ; the fully developed 
Nusselt number can be found from equation (22) 
once the first eigenvalue is known. For each 
chosen Re, and Pe,, enough terms in the series 
were obtained to guarantee a Nu value accurate 
to about 0.5 per cent over the desired range of x. 
Development lengths, defined as the distance 
Q.~ at which Nu = 1.05 Nufd, were determined 
for all cases. Values of C, Gf( l), etc. for both tube 
and duct flow, for the special case Rew = 0, 
agreed with Brown’s results [lo] to 9 figures. 
Computed constants and coefficients are 
available on request. 

C. W.T. results for tubes and ducts 
(a) Fully developed region. Before presenting 

solutions (to) the above equations, it is instruc- 
tive to examine certain limiting cases so that the 
influence of wall mass transfer on the fully 
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developed temperature profile, for example, can 
be physically understood. First consider the 
case Pew+ co. 

A large positive wall PC&t number (Rew > 0) 
implies that the convective heat transport away 
from the wall is large compared to the transport 
by conduction in the same direction. As Pe, + 
co, the wall becomes blanketed by a layer of 
fluid having a temperature very close to T,, and 
therefore Nu/.,, --* 0. Note that the P&let number 
can be large if either (a) the blowing rate is high 
(ReW + cc) but the Prandtl number is low or 
moderate or if (b) the Prandtl number is high, 
even though the blowing rate is small (Re, -+ 0). 
For Pe -+ CO, closed form asymptotic tempera- 
ture profiles are obtained in Appendix A for both 
cases (a) and (b) and for both tube and duct 
geometries. In all cases, this profile is flat at the 
wall and near the centreline, [(T - 7”)/ 
(TE - 7”)]/.d = exp [ - CPe&‘] where C is a 
constant. The asymptotic results are compared 
below with the “exact” solutions. 

For flow with suction, the influence of the 
cooled or heated wall will be restricted to a 
thermal layer near the wall. The thickness of 
this layer reflects the distance which heat con- 
ducted from the wall can penetrate into the 
fluid moving towards the wall. The higher the 
suction rate and/or the higher the Prandtl 
number, the thinner will be the thermal layer. 

That is, if d represents the thickness of the 
thermal layer, A + 0 as Pew + - m. For small 
A, most of the fluid heated by conduction is 
immediately withdrawn through the wall so that 
very little heat is transferred to the central portion 
of the tube or duct. Therefore, aTjdx --) 0 and 
[(T - T,)j( Tq - Tw)lsd + 1 as Pe, + - co (see 
Appendix A). 

Since, for this case, the heat transferred by 
conduction to the fluid [x k(T, - Tq)/A] is 
nearly equal in magnitude but opposite in 
direction to the heat convected from the fluid 
through the wall [ wpC,u&T, - T%)], one 
obtains from the definition of Pe,, Pe, x 
-2R/A. For large negative Pew therefore, the 
wall PC&t number physically represents the 

ratio of the tube diameter to the thickness of the 
thermal layer. 

The “exact” solutions for the fully developed 
temperature profile, the solid curves in Figs. 5 
and 6, display the trends expected from the 

IO- 

38- 

06. 

34- 

32- 

O- 

- C W T tube flow 

I Pew=-9 

1 

-- CHF tubeflow 

2 Pew= - I8 Re,=-4 5 

3 Pew=-45 
aequatmn (Al) 

4 P.?,’ 0 b. equation (A3) 

5 9,. 5 
6Pe,= 40 > Re,= 10 t 

c= I/R 

FIG. 5. Fully developed temperature profiles for flow in a 
circular tube with constant wall temperature and constant 

heat flux. 

asymptotic solutions. For no mass transfer 
through the wall, Re, = 0, the results are 
already well known. For suction, ReW < 0, 
the profile becomes fuller with larger negative 
values of Pe,, and C(T - T,)/( TE - Wlrd 
asymptotically approaches unity, as expected. 
For injection, Re, > 0, the profile drops off 
more quickly to zero. The asymptotic solutions 
are compared to the computed values for 
Pew = 40 in Figs. 5 and 6 for Re, = 10. For 
the same value of Pe,, but for larger Re,, the 
computed results would tend toward curve a, 
and for smaller Re, toward curve b. The close- 



232 G. RAITHBY 

ness of curves a and b illustrates that the fully 
developed profile is known quite precisely if 
only Pe, is specified ; the particular Re,, Pr 
combination, whose product equals the numeri- 
cal value of Pe,, is relatively unimportant. A 
similar result will be shown with respect to the 

-- C H F duct flow 

0 02 04 06 08 IO 

(=y/H 

FIG. 6. Fully developed temperature profiles for two- 
dimensional rectangular duct flow with constant wall 

temperature and constant heat flux. 

Nusselt number and development length compu- 
tations. Therefore the advantage of choosing 
Re, and Pe, as parameters, rather than the 
usual Re, and Pr, is considerable. 

Nusselt numbers in the thermally developed 
regions of tubes and ducts are shown in Figs. 7 
and 8 (solid curves) respectively. These were 
computed using equation (22). The general 
trends are those anticipated, namely Nusd -+ 0 
as Pe, -+ CD, and as Pe, + - co, Nu, --) -Pew 
(from equation (22) since, from Appendix A, 
p:+OasPe,+ -00). 

For tube flow with mass injection (Fig. 7), 
results are shown for the two extreme velocity 
profiles corresponding to Re, + 0 and Re, --+ 
CL. Results for all intermediate blowing rates 

must fall between these extremes; computations 
for Rew = 5 and 10 are shown. It will be noted 
that Nu, is also primarily a function of Pew, 
depending only weakly on Re,. This is even 
more evident for duct flow, Fig. 8, where the 
curves corresponding to the extreme cases are 
almost identical. 

For suction, computations for tube flow are 
reported for the two extremes Re, --+ 0 and 
Re, = -45978, the latter being near the 
critical value where the wall velocity gradient 
becomes zero. Other curves for -4 < Re, < 0 
were found to be grouped near the curve for 
Re, + 0; only for Re, values close to the 
critical did the Nu, vs. Pe, curve become 
sensitive to Re,. For duct flow with suction, 
Fig. 8 shows that the results for Re, + 0 and 
Re, = - 15 are almost identical. Results cor- 
responding to the slug flow case, Re, + - cc, 
are also included but, from the previous dis- 
cussion, the existence of laminar profiles for 
- 24 > Re, > - CC is open to question. 

(b) Thermal entrance region. For the calcula- 
tion of heat or mass transfer rates, it is important 
to know how the Nusselt number changes in 
the thermal entrance region and in what axial 
distance the development occurs.* Nusselt 
number distributions in the entrance regions are 
shown for tubes and ducts in Figs. 9 and 10 
respectively. The similarity of the distributions 
for a large range of Re,, but for a given Pe,, is 
apparent, particularly for duct flow. The upper 
curves in Fig. 9 are terminated at the point 
x = 0.05 where all the mass has been removed 
from the tube. 

The dimensionless development lengths, i.e. 
the values of x for which Nu = 1.05 NUT,, for 
tubes and ducts are shown in Fig. 11. The 
dominant features are (1) the strong increase in 
x,.* with Pe,, and (2) the nearly unique depen- 
dence of xJI on Pew except for values of Re, 
near the critical value for the tube and for the 
slug flow case (Re, + -CC) for the duct. As 
already pointed out, solutions for Re, < -24 

* Results of other computations, such as mean and 
centerline temperatures are available on request. 
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6- 

Tube flow 

-CWT 

--C H.F 

5 ,O 15 29 25 30 35 

FIG. 7. Dependence of Nusselt number on Re, in the 
thermally developed region ofa circular tube. 

for the duct flow may have no physical signifi- 
cance--thus the question mark near the upper 
curve in Fig. 11. In terms of the more familiar 
parameters of Pr and Rew, Fig. 11 illustrates 
that, for a given Prandtl number, suction 
decreases the thermal development length and 
injection increases it. 

C.H.F. solutions for tubes and ducts 
The temperature field and Nusselt number 

distributions in the thermal entrance region 
with a constant heat flux boundary condition 
are now sought. It is assumed that the fluid 
and wall have a uniform temperature T, up to 
some point x = 0, where the velocity field is 
fully developed, and that for x > 0, qw is 
constant. The method used here, analogous to 
that of Siegel et al. [l 11, involves first obtaining 
the fully developed temperature profile. The 
difference between the developing temperature 
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2- 

Re,-0 3 
Suction 
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Duct flow 

---CWT 

--CHF 

FIG. 8. Dependence of Nusselt number on Re, in the 
thermally developed region of a two-dimensional rect- 

angular duct. 
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Tube flow 

--- C.H.F 

- C.W.? 

Pe,: -IO (suction) 

FIG. 9. Nusselt number distributions in the thermal entrance 
region of a circular tube, 
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Duct flow 

--- C.H.F 
--- C.W.T. 

-- 
1 

Fx;. 10. Nusselt number distributions in the thermal 
entrance region of a tw~~imension~ rectangular duct. 
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v r Duct 
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-15 
Re,-0 
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R 

v L-4.597* 
-2.o// .. 

-3.5 / Suction 

C.W T results 

Injectmn 
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pew 

FIG. 11. Development lengths for flow in circular tubes and 
two-dimensional rectangular ducts with a constant wall 

temperature. 
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profile and the developed profile is then deter- 
mined by applying the Graetz method. 

Analysis-for thermally developed region, C.H.F. 
case. For the C.H.F. case, the dimensionless 
temperature, 19 is redefined as 8 = k(T - T,)i 
q,R for the tube and 0 = k(T - T,)/q,H for 
the duct. In the developed region, the shape of 
the temperature profile will be independent of x 
but the temperature level may still depend on 
the axial position. Accordingly, we seek a fully 
developed dimensionless temperature, ofd, 
having the form 

of, = R(X) + h(i). (23) 

By substituting this expression into equations 
(14) and (15) for the tube and duct respectively, 
and requiring that all the boundary conditions 
except T = T, at x = 0 be satisfied, one obtains 
the form of the function R(x) and the governing 
equation for h(i). For either geometry, 

eJ,d = ll+g!-ln[l + (1 +.j)PerVX] 

j w 
+ h(i) (24) 

where ,j = 1 for the tube and ,j = 0 for the duct. 
For h(c) = g(c) - K(K is some constant), 

g(c) is defined by the following equation; 
primes denote differentiation with respect to [ 

b.c. [=O: g=l, g’=O (25) 

[ = 1: g’ = 1. 

The three boundary conditions are sufficient 
to determine g(i) and Bj in equation (25). g(0) 
may be assigned arbitrarily, the effect on h(c) 
being simply to change the value of K. From 
the definition of bulk temperature, the constant 
K is found to be 

K = 2 1 .f J(r) g(i) ds. 
0 

(26) 

The analysis for the thermally developed 
region is thus complete. This solution contains, 

as a special case, the solution for Re, = 0. For 
tube flow with Re, = 0, fl = c2 - c4j2, so 
that equation (25) can be immediately inte- 
grated. To obtain the result derived by Siegel 
et al. [ 1 l] requires only the additional observa- 
tion that 

p,w’o 2~$-ln(l + 2Pe,X) = B,x lim 
( W > 

where B, = 4. 
Results for the fully developed region. The 

dimensionless temperature profile in the full 
developed region is, from equation (23) 

= [s(i) - g(l)]&(O) - g(l)]. (27) 

An understanding of the effect of blowing and 
suction on the temperature profile may be 
obtained by considering asymptotic solutions 
to equation (25) for large values of Pew. The 
results, given in Appendix A, indicate that the 
dimensionless temperature does not decrease 
near the centreline nearly as rapidly for in- 
creasing positive values of Pew as in the C.W.T. 
case. For Pew + - cc however, the same asymp- 
totic temperature profile is obtained for either 
the C.W.T. or C.H.F. case, namely [T - T,)! 

(TE. - TW)lfd + 1. 
Dimensionless temperature profiles were 

obtained by solving equation (25) numerically 
for the same Re, and Pew values as in the 
C.W.T. case. These results, the asymptotic 
solutions and the C.W.T. results for tube flow 
are all plotted together in Fig. 5. For large 
negative Pew, the profiles become flatter, as 
expected, and the C.W.T. and C.H.F. profiles 
become indistinguishable (curves 2 and 3). The 
C.H.F. asymptotic solution for Pew = 40 (equa- 
tion (A7) with f 1 = f sin 7zc2;2) predicts the 
correct profile shape: the quantitative agreement 
between the asymptotic solution and the exact 
solution becomes substantially improved for 
larger Re, and Pew values. Also, the differences 
between the C. W.T. and C.H.F. profiles become 
more pronounced for large positive Pew. Figure 
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6 shows the corresponding results for the duct 
flow case. 

The expression for the fully developed Nusselt 
number is found from equation (24) to be 

Nq, = 2 = ___f?!!__-+ 
h(1) [Bj/2Q + l)] - 1 

(28) 

The second equality comes from integrating 
equation (25) from 5 = 0 to c = 1. h(1) and Bj, 
and therefore Nu,.,, can be found by solving 
equation (25) numerically. Another method is 
to integrate equation (25) over the cross-section 
and use the boundary condition g’(1) = 1 to 
obtain the equation 

Bj = 2exp (Pew{h$)d.z) / 

1 fi’(c) exp”(Pew/ A$) dr) d5. (29) 

Once the velocity profile (f. for duct or f1 
for tube) is known for the required value of 
Re,, equation (29) can be integrated numeri- 
cally for the desired Pew to obtain Bj_ 

It is shown in Appendix A that, for large 
negative values of Pew, Bj + 0 so that, from 
equation (28), NUT,, + - Pew as Pew -+ - 00. 
This is the same result as for the C.W.T. case. 
Also from the Appendix, we could expect that 
Nurd + 0 as Pew + co. To determine how 
rapidly the Nusselt number decreases with 
increasing Pew, consider flow in a tube with a 
low blowing rate (Re, -+ 0) where f1 x c2 - 
r4/4. If the Prandtl number is very large, 
Pew would also be large so that an approximate 
solution to equation (29) is 

From equation (28), 

(tube) (30) 

32a 32a 
NuJd+ ---! 1 - -- ; 

[ 1 Pew’ Pew 

(tube) (3 1) 

= 32!Pe, for Pew -+ DZ but Re, + 0. 

For the same geometry, but for large blowing 
rates and moderate or small Prandtl number, 
it would be expected that Nu,., would be still 
given approximately by the same equation. A 
similar solution could presumably be found for 
duct flow. 

The Bj values found by numerically inte- 
grating equation (25) were introduced into 
equation (28) to give values of NUB,,. The results 
for tube flow (j = 1) are shown by the dashed 
curves in Fig. 7. The C.W.T. results are also 
shown for comparison. The expected trends 
are indicated, namely Nu/,, + - Pew for Pew + 
- co, and for Pew -+ co but Re, small, equation 
(31) is asymptotically approached. The cor- 
responding results for duct flow (j = 0) are 
shown in Fig. 8. 

Analysis and results for thermal entrance 
region, C.H.F. case. Following the method of 
Siegel et al. [ll] for flow without mass transfer, 
a temperature 8* is defined by 

8* = e - 8, (32) 

where 8 is the temperature profile in the 
developing region and 8,, is the fully developed 
profile found in the previous section. Substi- 
tuting 8 into equation (16) and applying the 
boundary conditions, it follows that 8* is 
described by the problem 

1 iqx) ae* 
(i + 1) ii, ax 

(33) 

x = 0: 8* = -efd. 
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I 
Re,= 5 

Re, -0 

ti 

Re,=lO 

Re,- +a3 

C H.F results 

-20 -15 -10 -5 0 5 IO 15 20 25 

FIG. 12. Development lengths for flow in circular tubes and 
two-dimensional rectangular ducts with constant heat flux 

at the wall. 
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Solutions for 8* are found by a method (Graetz 
method) exactly analogous to the solutions for 8 
in the C.W.T. problem. In this case 

O* = f Ci[l + (1 + .j) ~ew~]-‘~‘~“~ G,(i). 
i=l 

(34) 

Gi is described by equation (18) with Gf( 1) = 0 
replacing the boundary condition G,(l) = 0. 
The weighting function remains unchanged. 
The analysis for 0* is thus complete. 

From equation (32), and the equations for 
8,,, the desired solution for 8 is 

8 = - ~ 3--- ln[l + (1 + .j)Pe,X] + h(i) 
(1 + .j)Pew 

Arbitrary wall-temperature and heat-flux 
variations. Since the energy equation is linear, 
the superposition principle can be used to 
extend the above calculations to cases where 
the wall temperature or heat flux varies in an 
arbitrary manner. The method is completely 
analogous to that described by Sellars et al. [ 121 
for the C.W.T. case, and Siegel et al. [l l] for 
the C.H.F. case. Because this procedure is so 
widely known, no further enumeration is 
necessary. 
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APPENDIX A 

In the text, physical reasoning lead to conclusions, for 

asymptotically large negative and positive Pe,, which can 

be used to derive asymptotic temperature profiles. These 

solutions for C.W.T. and C.H.F. will be considered in turn. 

(a) C.LVT. Pe,+ JL 

In the section. “C.W.T. Results for Tubes and Ducts”. It 

was reasoned that, Nu,, + 0 as Pe, + I_. From equation 

Introducing these into the above equation, direct integration 

and application of boundary conditions at ; = 0 leads to 

solutions of G,(c) for Pe, + %;. This gives the developed 

temperature profile for large Pr, since, from equation (171 

The solutions are listed in Table 1. equations (AlHA4). 

(b) C.lVT. Pew + - PL 

For this condition, it is shown in the text that there is little 

heat transfer into the central portion of the tube or duct. In 

terms of the axial temperature gradient, dT2.u + 0 as 

PC, + - x. Since [j,’ = (ti;2ii,) S01i&, /I,’ + 0 as Pe, + 
- 7 Integrating equation (18) leads to G,(t) + 1 for 

j = 0 or j = 1 and for any velocity profile. That is. 

[r- T,) (T% - T,)],, -+ 1 as Pe, + - 7,. This result is 

also listed in Table 1. 

(c) C.H.F., Pe, + -L, tube,flow 
From equation (24), for C.H.F.. 

[(7- T,),& - Tw)],‘, = [g(T) - g(l)]![g(O) -g(l)] (A6) 

where g(i) is the solution to equation (25). To find a first 

Table 1. Asymptoticfully deceloped temperature pryfiles, C. W7: case 

Geometry Re, 

Asymptotic velocity 
profile, u:ii 

Asymptotic temperature profile 

[(T- T,):(T- T,&, Equation 

tube + -L + T,~ + n/2 cos (xi2,2) (Al) 

duct n/2 cos (ni,2) (A2) 

tube 

duct -0 + c? + (3:2)(1 - i2) 

(123) 

tube 

d:‘,t 

--1-Z -1 (A5) 

(22), therefore, /?,’ -+ Pe, as Pe, + x. Introducing this approximation to the solution for tube flow for Pew + 1’. 
into equation (18) results in the ig” term in equation (25) can be neglected compared to 

(CjG,‘)’ + Pe,&G,)’ = 0. 
the other terms. This reduces the order of the differential 

equation and, as a result, the boundary condition g’(1) = 1 
This equation can be integrated for either the tube geometry can not be satisfied. Direct integration leads to the result. 

(i = 1) or duct geometry (i = 0) if the velocity profile, i.e. 

,&. is known. The velocity profiles for the limiting cases of CT= T,)/(T% - T,)] 1 1 

small and large injection rates are indicated in Table 1. _ In (1 + Pe,f,)l(ln (1 + Pe,:2) (A7) 
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for Pe, 4 Y>. This indicates that, for the C.H.F. case, the as Pew-r r. Since Bj = [ii(~)~ii,]dB:?~. B. + 0 as 

temperature does not decrease as rapidly with Pew near the Pr, + - TX. For this limiting case, for any veloctty profile, 

centerhnc as in the C.W.T. case. Either of the asymptotic equation (25) yields the result g(t) + g(O) so that from 

velocity profiles for Re + 0 and Re, + r; can be introduced equation (A6) 

into equation (A7). 
[(T- T,),(T% - T,)],, + las Pe, + - x. (AU 

(d) C.H.F., PC, + - Y> 

By the same reasoning as in the C.W.T. case. E?;?x + 0 

TRANSFERT DE CHALEUR LAMINAIRE DAN.5 LA RfiGION D’ENTRI?E THERMIQUE 
DE TUBES CIRCULAIRES ET DE CONDUITS RECTANGULAIRES BIDIMENSIONNELS 

AVEC SUCTION ET INJECTION PARIBTALES 

R&me--Des profils developpts de vitesse, pour des Ccoulements avec addition ou soustraction de masse 
aux frontitres, sont etablis pour les geometries correspondant a la fois a un tube circulaire et a un conduit 
rectangulaire bidimensionnel. Pour un tcoulement dam un conduit bidimensionnel on a trouve une 

nouvelle solution qui suppose la possibilite dune transition vers la turbulence induite par suction. Des 

equations representant les coefficients de frottement sont present&es pour les deux geometries. Le developpe- 
ment du champ de temperature dans une region de vitesse entitrement developpee est analyl pour les 
deux conduits et pour dks conditions aux limitcs de temperature constante et de flux thermique constant. 
On demontre la dependance presque universelle des rtsultats du transfert thermique a un unique parametre, 
un nombre de P&let base sur la vitesse du fluide traversant la paroi. Plusieurs solutions asymptotiques 
relatives a l’equation d’energie sont obtenues pour des hauts flux massiques d’addition et soustraction. 

LAMINARE WARMEUBERTRAGUNG IM THERMISCHEN EINLAUFGEBIET 
KREISFGRMIGER ROHRE UND ZWEIDIMENSIONALER RECHTECKKANALE MIT 

ABSAUGEN UND EINBLASEN AN DER WAND 
Zusammenfassung-Es wird iiber ausgebildete Geschwindigkeitsprofle sowohl ftir kreisfijrmige Rohre 
als such fiir rechteckige Kanalgeometrien bei Stramungen mit Massenzu- und abfuhr in der Grenz- 
schicht bereichtet. Fiir die Striimung in einem zweidimensionalen Kanal wurde eine neue Lijsung gefunden, 
die die Moglichkeit eines durch Absaugung hervorgerufenen Umschlages in Turbulenz andeutet. Gleichun- 
gen ftir die Reibungsbeiwerte werden fiir beide Geometrien angegeben. Die Entwicklung des Temperatur- 
feldes im Gebiet ausgebildeter turbulenter Strijmung wird ftir beide Kanlle bei konstanter Temperatur 
und konstantem Wlmestrom untersucht. Die nahezu universelle Abhlngigkeit des WIrmetibergangs von 
einem einzigen Parameter, niimlich einer auf der Geschwindigkeit der durch die Wand tretenden Fhissig- 
keit basierenden Peclet-Zahl, wird gezeigt. Ftir grosse Massenzu- und abfuhr werden mehrere 

asymptotische Lijsungen der Energiegleichung erhalten. 

JIAMHHAPHbI$i TEHJIOOEMEH B HAI’PETOH BXO+!JHOfi OEJIACTH 
HPYI’JIbIX TPYE II ABYMEPHbIX IIPHMOYIOJIbHbIX TPYB HPH 

OTCOCE B HH~EHHHH HA CTEHHE 

AEHOT~~H~~-B CTaTbe II~IJBO~F~TCFI IIOJIHOCTbIO pa3BHTbIe IIpO@iJI&I CKOpOCTM I.lm IIOTOKOB c 

IIOAasefi IZJIH OTBOAOM MaCCbI =iepe3 PpaHHIly KaK WIH KOJIbqeBOfi Tpy6bI,TaK II AByMepHbIX 

IIpHMOyI'OJIbHbIX FeOMeTpHfi Tpy6OnpOBO&OB. npI4 TeYeHIlll B AByMepHOM Tpy6onpoBoge 

HatiAeHO HOBOe peIIIeHHe, IIpe@IarafOwee B03MOH(HOCTb IIepeXOAa K Typ6yJIeHTHOCTP1, 

BbI3BaHHOfh BCaCbIBaHHeM. YpaBHeHEiH, COAepNaLWe K03@#WMeHTbI TpeHHII, IIpeJ(CTaBJIeHbI 

AJIH o6enx reOMeTpL&. Pa3BLlTlle TeMIIepaTypHOI'O IIOJIR B o6nacTn IIOJIHOCTbIO pa3BLIT08 

CKO~OCTH aKam3HpyeTCH KaK WIH Tpy6OnpOBOAOB, TaK n AJIH FpaHliYHbIX yCJIOBIlfl IIOCTOH- 

HHOtiTeMIIepaTypbIH IIOCTOHHHOt IIJIOTHOCTIlTeFIJIOBOrO IIOTOKa.nOKa3aHa IIO=ITHyHHBepca- 

JIbHaH 3aBMCEiMOCTb pe3yJIbTaTOB IIepeHOCa TeIIJIa OT eAHHor0 IIapaMeTpa, a HMeHHO WICJIa 

neKJIe, OTHeCeHHOrO K CKOpOCTH HG'IAKOCTB, IIepeCeKaKWefi CTeHKy. nOJIyWH0 HeCKOJIbKO 

aCMMnTOTW,eCKHX peIIIeHRi% ypaBHeHMR 3HepNPI JJJIH 6onbmnx CKOpOCTet IIOAaWl I4 oT6opa 
MaCCbI. 


